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Acute kidney injury (AKI) is a frequent complication that
occurs after percutaneous coronary intervention (PCI) in 7-
10% of cases. Several studies over the past decade have
worked on models to predict incidence of AKI after PCI
from a variety of risk factors to inform decisions on treat-
ment and mitigation strategies. Using a dataset of elec-
tronic health records (EHR) from Yale New Haven Hospi-
tal (YNHH), we explored the application and development
of advancedmachine learning tools in extracting previously
unrecognized patterns in longitudinal lab measurements to
enhance the prediction performance of post-PCI AKI mod-
els. We include variables for patient demographics, prior
procedures, prior medications, prior diagnoses, and most
recent lab value measurements as static variables. We use
a baseline logistic regression model, various feedforward
neural networks, and LSTM models. We find that includ-
ingmultiple (sequential) pre-procedure creatininemeasures
improves the performance over static variables. Addition-
ally, we find that our current LSTM architecture does not
improve upon the feedforward neural network for model-
ing the longitudinal lab data, though future work should ex-
plore if different architectures or methods of including the
irregularly-sampled, sequential pre-procedure creatinine val-
ues can lead to improved performance.
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1 | INTRODUCTION

Coronary artery disease is the leading cause of
mortality in the United States accounting for over
600,000 annual deaths [1]. Acute coronary syn-
drome is a subcategory of coronary artery disease
[2], and a common and effective treatment op-
tion is percutaneous coronary intervention (PCI)
[3]. In order to perform PCI, a contrast dye is in-
jected for diagnostic imaging, and due to the po-
tential nephrotoxicity of iodine contrast agents,
acute kidney injury (AKI) is one of the most com-
mon complications after PCI, increasing patient
morbidity [3]. Depending on the definition used
for AKI, which is usually measured by increase in
creatinine level, the incidence of AKI after PCI can
range from from around 7-10% [4][5]. Thus, de-
veloping a better understanding of various factors
that may predict AKI after PCI is crucial for reduc-
ing patient morbidity, as varying amounts of con-
trast can be used or the procedure can be avoided
entirely.

Over the past few years, several studies have
either validated existing models for predicting
AKI or developed new and improved models. In
2018, Huang et. al. aimed to apply various ma-
chine learning techniques to improve upon a con-
temporary logistic regression model [4]. The au-
thors found a small but statistically significant im-
provement in performance over the baseline AKI
model using the same dataset and found that the
new model performed better for patients with ex-
tremely low and high risks [4]. More recently, in
2022, Kuno et. al. applied a tree-based ML ap-
proach aiming to predict AKI with a lightGBM
model, and the authors noted that their model
was able to quantify the risk of AKI with almost
half the number of clinical variables compared to a
baseline logistic regression riskmodel [5]. Despite
the several published models, these studies have

largely relied on cross-sectional data and ignored
the potential predictive information contained in
the longitudinal vital and lab measurements.

Using electronic health records (EHR), which
contain richer data and entire care history of pa-
tients, we aim to explore the application and de-
velopment of advanced machine learning tools
in extracting previously unrecognized patterns to
enhance the prediction performance of post-PCI
AKI models.

2 | METHODOLOGY

2.1 | Dataset

We use EHR data from patients receiving PCI at
Yale New Haven Hospital (YNHH). The dataset
consists of basic demographics, prior health infor-
mation, and longitudinal lab values from patients
up to 1 year before the procedure, though the
frequency, quantity, and dates of measurements
are not consistent across patients. The demo-
graphic information includes reported race, eth-
nicity, age, and sex. Additionally, we had access
to data on prior patient diagnoses, medication
histories, prior admits (whether they were emer-
gency or elective), and prior imaging procedures.
Finally, we had access to longitudinal lab values of
creatinine, along with measurements of sodium,
chloride, blood urea nitrogen (BUN), potassium,
hemoglobin, and other substances. The original
dataset consisted of 11,662 unique PCI proce-
dures from 9,386 unique patients. These pro-
cedures took place between January 2013 and
November 2019.

2.2 | Preprocessing

The initial exclusion criteria were in line with prior
literature [4][6] and are summarized in Figure 1.
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These exclusion criteria consisted of removing
procedures where patients were discharged on
the same day, procedures that were not the first
in a single hospitalization, procedures without a
before or after creatinine measurement, and pro-
cedures where the patient was on dialysis. Over-
all, this narrowed the dataset from 11,662 proce-
dures from 9,386 unique patients to 7,146 proce-
dures from 6,146 unique patients.

Exclusion Criteria 1:
Discharged on same day

(n=485)
n=11,177 (95.8%) remaining

Original Data (n=11,662)

Exclusion Criteria 2: Drop
all but first procedure
in single hospitalization

(n=514)

n=10,633 (91.2%) remaining

n=7,370 (63.2% remaining

Exclusion Criteria 3: Drop if
there are no before and af-
ter creatinine measurements

(n=3293)

Exclusion Criteria 4:
Drop patients on dialysis

(n=224)
n=7,146 (61.3%) remaining

Preprocessed Data (n=7,146)

F IGURE 1 The exclusion criteria applied in order.
The "n" number represents the number of procedures
at each step

After implementing the exclusion criteria, we
next needed to define our outcome variable – the
incidence of AKI. This was computed by using a

standard definition of AKI as a >= .3 mg/dl abso-
lute increase in creatinine levels or a 1.5x relative
increase in creatinine levels [6][4]. The prevalence
of AKI in the dataset was 11.7%.

Within the remaining procedures after apply-
ing the exclusion criteria, 70.9% involved male pa-
tients and 29.1% involved female patients. The
patients had a mean age of 80.0 with a stan-
dard deviation of 12.1. The primary race reported
was 82.2% White or Caucasian, 8.6% Black or
African American, 7.5% other/refused/unknown,
1.4% Asian, .1% Native Hawaiian or Other Pacific
Islander, and .1% American Indian or Alaska Na-
tive.

2.3 | Feature Engineering

Feature engineering was required to transform
the basic demographics, prior health informa-
tion, and longitudinal lab values into features that
could be inputted into various models. All cat-
egorical demographic information (including pri-
mary race, ethnicity and sex) was one-hot en-
coded. For some of the pre-procedure measure-
ments (height, weight, diastolic blood pressure,
systolic blood pressure, temperature, pulse, respi-
ration), datawasmissing for less than 5%of proce-
dures total across all these variables. Thus, miss-
ing data was imputed using the mean across all
patients, and indicator variables were created to
indicatewhether the valuewas imputed (only four
were necessary since the blood pressure, temper-
ature, and pulse measurements had missing data
in the same rows). For lab values, we included a
feature for any labs for which we had data prior to
procedure in at least 90% of the data rows (there
were 10 such values including creatinine, the 11th
highest was only appearing in 45.6% of the rows).
For cases where there was missing data, we im-
puted the data using the mean lab value over all
patients, and created a separate indicator feature
to mark where values had been imputed.
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For all the following medical history-related
variables, we only included any information that
occurred prior to hospital admission for the PCI
procedure. For prior medication history, we one-
hot encoded pharmaceutical classes and thera-
peutic classes of drugs that were prescribed in
more than 25% of the cases in the data (this in-
cluded 31 pharmaceutical classes of drugs and 24
therapeutic classes of drugs. For prior diagnosis
history, we one-hot encoded any prior diagnoses
that were diagnosed before admission to the hos-
pital for the procedure if they appeared in more
than 25% of the cases in the data. These were
based on ICD10 codes and the most common
diagnoses were hypertension (73.3%), hyperlipi-
demia (62.7%), and atherosclerotic heart disease
of native coronary artery without angina pectoris
(60.5%). In total, 11 prior diagnoses were one-
hot encoded. For prior imaging procedures, since
these were more sparse, we one-hot encoded any
imaging procedures if they occurred in more than
10% of the cases, and there were 9 such imaging
procedures.

At the end of this feature engineering, we had
115 static predictors (no timing information had
been encoded) to use to predict our outcome vari-
able (AKI) in the baseline model.

For the dynamic data, we marked all prior cre-
atinine measurements along with the date and
time they were taken. We also include dynamic
data for all the 9 other labs we had previously
included because we had found we had mea-
surements for at least 90% of the rows. These
included blood urea nitrogen, chloride, sodium,
potassium, hematocrit, hemoglobin, wbc, neu-
trophil absolute count, and neutrophils. In order
to be able to incorporate this data into a feed-
forward neural network, we created various buck-
ets (date ranges pre-procedure) that balanced the
numbers of observations in each bucket (Figure
2). The buckets were (1) up to 48 hours pre-

procedure, (2) 48 hours - 1 month pre-procedure,
(3) 1 month - 6 months pre-procedure, and (4) 6
months - 1 year pre-procedure. Figure 2 shows
the range of number of measurements in each
bucket.

Table 1 shows a summary of features included
in each of the models.

F IGURE 2 The above plot (histogram) shows all
creatinine measures, and how many days before the
patient’s respective procedure they were taken. The
below plot shows for each bucket the range (excluding
the 5% most extreme values) of number of creatinine
measurements per patient.

3 | RESULTS

3.1 | Baseline Logistic Regression

Before attempting the neural networkmodels, we
first sought to use our 115 static predictors in a
logistic regression model to determine a baseline
performance. We performed 5-fold cross valida-
tion with random splits, though we ensured that
no patient appeared inmultiple folds to avoid data
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Model # Features Static Features Included Dynamic Features Included

Baseline (Section 3.1/3.2) 115 Demographics, Most Recent Lab Values, Medication History, Diagnosis History, Procedure History -

Creatinine Buckets (Section 3.3.1) 123 Demographics, Most Recent Lab Values, Medication History, Diagnosis History, Procedure History 4 Creatinine Buckets

Changing Creatinine Values (Section 3.3.2) 132 Demographics, Most Recent Lab Values, Medication History, Diagnosis History, Procedure History 4 Creatinine Buckets, 3 Differences (min, mean, max) Between Sequential Buckets

All Changing Lab Values (Section 3.3.3) 285 Demographics, Most Recent Lab Values, Medication History, Diagnosis History, Procedure History 4 Buckets + 3 Differences (min, mean, max) Between Sequential Buckets for 10 Lab Values

TABLE 1 This table shows the different features in each of the models.

leakage. We repeated this method 20 times to
generate a confidence interval for the model per-
formance. We found that the mean value of the
area under the ROC Curve (AUC) for the test data
was .806. We found that the 95% confidence in-
terval for the model performance for this metric
was .805-.812.

3.2 | Baseline Neural Network
Model

Next, we used the same data on a neural network
model to understand the baseline neural network
model performance without any of the dynamic
variables. We performed nested cross validation
with five folds in both the outer and inner cross
validation loops in order to tune neural network
parameters including batch size, width of interme-
diate layers, learning rate, and number of epochs
for training. Our neural network consisted of one
middle layerwith its width tuned as a hyperparam-
eter. A tanh activation function was applied to
the middle layer and a sigmoid activation function
was applied to the output layer. We used anAdam
optimizer and binary cross entropy loss function.

We found that the average AUC score for the
test data was .810, and the 95% confidence inter-
val was .807-.814.

We also experimentedwith deeper neural net-
works, such as a neural network with two middle
layers and a neural network with three middle lay-
ers. We found that these deeper neural network
models had average test data AUC scores of .808
(.805-.812 95% CI) and .807 (.803-.811 95% CI)
respectively. Thus, since there was not a signif-

icant increase in model performance by incorpo-
rating additional layers, we retained the same ar-
chitecture with one intermediate layer for other
models as well.

3.3 | Incorporating Longitudinal Lab
Values

3.3.1 | Incorporating Creatinine
Measurement Buckets

Next, we incorporated the longitudinal creatinine
lab values. As described in Section 2, we had
creatinine measurements from up to 1 year pre-
procedure for patients. We placed all these mea-
surements into four different buckets based on
time before procedure, and these buckets were
chosen in order to reduce the number of instances
of empty buckets for a patient (see Section 2).
For each bucket, we had a variable for the mean
measure, along with an indicator variable to repre-
sent whether or not the data had to be imputed.
We imputed values using the mean value of that
bucket over all patients in the data. We then
repeated the same nested cross validation pro-
cesswith the same neural network architecture as
specified in the previous section. We found that
the average AUC score for the test data was .819,
and the 95% confidence interval was .815-.823.
Thus, incorporating these buckets compared to
just incorporating a single pre-procedure creati-
nine measure led to a significant improvement in
model performance.
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3.3.2 | Incorporating Changing
Creatinine Values

In order to capture the dynamics of changing cre-
atinine values over times, we then created differ-
ent features out of the four buckets, including
average sequential difference, minimum sequen-
tial difference (smallest in the earlier period minus
largest in the later period), and maximum sequen-
tial difference (largest in the earlier period minus
smallest in the later period). We used the same
neural network architecture as previously speci-
fied. We found that the average AUC score for
the test data was .818, and the 95% confidence
interval was .815-.822. Thus, including these ad-
ditional features had no additional explanatory
power for our model.

3.3.3 | Incorporating All Changing Lab
Values

Finally, we incorporated all the lab values for
whichwe had sufficientmeasures, rather than just
creatinine. These were the same substances as
specified in Section 2, and included blood urea ni-
trogen, chloride, sodium, potassium, hematocrit,
hemoglobin, wbc, neutrophil absolute count, and
neutrophils. We created the same four buckets as
we had for the creatinine measures, and took the
same sequential differences as specified above
(minimum difference, maximum difference, mean
difference). We used the same neural network ar-
chitecture as previously specified, and we found
that the average AUC score for the test data was
.818, and the 95% confidence interval was .814-
.821. We found no evidence that including se-
quential data for lab values besides creatinine led
to improvements in our neural networkmodel per-
formance.

3.3.4 | LSTM Dynamic Model

LSTM models are a type of recurrent neural net-
work that is capable of learning dependencies in
sequential data. These models have been used
in other areas of biological research [7][8]. Thus,
we aimed to see if using an LSTM model could
improve our performance for the sequential data.
The neural network architecture that was used is
specified in Figure 3. We created an LSTM layer
that took in our 4 time-steps (one for each bucket)
for any dynamic features (creatinine or other lab
values). The LSTM layer consisted of 20 hidden
states. We then combined the output of this
LSTM layer with the static predictors we used in
our other models, and created a fully connected
layer with a width of 60, applying a tanh activa-
tion function. Finally, this layer was connected to
the output layer and a sigmoid activation function
was applied to generate our predictions for risk of
AKI after PCI.

3.3.5 | LSTMWith Creatinine Values

We first found that including only the creatinine
sequential data in the LSTM coupled with the 115
static predictors led to a test AUC of .813 (.807-
.818 95% CI). This was not an improvement over
the same model with the feedforward architec-
ture. It is possible that the 4 buckets we used
were not optimal for leveraging the ability of the
LSTM to learn sequential dependencies.

3.3.6 | LSTMWith All Lab Values

Similar to what we found with the feedforward
neural network, we found that the LSTM model
with all lab values did not significantly improve
upon the version without these additional lab val-
ues. This model had a test AUC of .817 (.809-.824
95% CI).
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Dynamic Input
(4 Time Points/Buckets;

10 Features)

LSTM Layer (1 Layer, 20 Hidden States) Static Input (115 Baseline Features)

Fully Connected Layer (Width = 60)

Output (Probability of AKI)

F IGURE 3 The architecture for the LSTM model.

4 | DISCUSSION

Our results are summarized in Table 2. We found
that using a neural network model improves per-
formance compared to a basic logistic regression.
Additionally, incorporating longitudinal creatinine
data leads to a significantly better model perfor-
mance over the baseline neural network. How-
ever, adding in additional sequential lab values of
substances such as blood urea nitrogen, chloride,
sodium, potassium, hematocrit, hemoglobin, wbc,
neutrophil absolute count, and neutrophil count,
does not seem to improve model performance.

Additionally, for the features we included, our
model performance did not improve using the
LSTM structure compared to treating each se-
quential bucket of measurements as independent
features.

Several further directions for our work could
include measuring variable importance by remov-
ing sets of features and determining whether the
model performance is significantly decreased. For
example, we could remove all demographic vari-

ables or prior procedure variables to see if these
significantly impact model performance.

Future work should experiment with further
types of architectures, including vanilla RNNs, as
well as other ways of passing in the dynamic in-
put (such as including all sequential pre-procedure
creatinine measurements instead of the average
within 4 buckets). One of our difficulties was
that 53% of the patients in our dataset had
3 or fewer pre-procedure creatinine measures,
which means that for a majority of patients, there
wasn’t a long sequence of pre-procedure mea-
surements – more data would be helpful to de-
termine how much predictive power can be ex-
tracted from these measures. Additionally, since
increasing model depth of the baseline neural net-
work model didn’t seem to improve the model
results, its possible that an alternative structure
such as a ResNet would bring improvements for
the deeper models.
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Model # Features Mean Testing Data AUC (95% CI)

Baseline Logistic Regression (Section 3.1) 115 .806 (.805-.812)

Baseline (Section 3.2) 115 .810 (.807-.814)

Baseline (2 Middle Layers) (Section 3.2) 115 .808 (.805-.812)

Baseline (3 Middle Layers) (Section 3.2) 115 .807 (.803-.811)

Creatinine Buckets (Section 3.3.1) 123 .819 (.815-.823)

Changing Creatinine Values (Section 3.3.2) 132 .818 (.815-.822)

All Changing Lab Values (Section 3.3.3) 285 .818 (.814-.821)

LSTMWith Creatinine Buckets (Section 3.3.5) 123 .813 (.807-.818)

LSTMWith All Lab Values (Section 3.3.6) 285 .817 (.809-.824)

TABLE 2 This table shows the performance of the different models.
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